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Nacre, the iridescent material of the shells of pearl oysters and
abalone, consists mostly of aragonite (a form of CaCO3), a brittle
constituent of relatively low strength (≈10 MPa). Yet it has aston-
ishing mean tensile strength (≈150 MPa) and fracture energy
(≈350 to 1,240 J/m2). The reasons have recently become well
understood: (i) the nanoscale thickness (≈300 nm) of nacre’s
building blocks, the aragonite lamellae (or platelets), and (ii) the
imbricated, or staggered, arrangement of these lamellea, bound
by biopolymer layers only ≈25 nm thick, occupying <5% of vol-
ume. These properties inspire manmade biomimetic materials.
For engineering applications, however, the failure probability of
≤10−6 is generally required. To guarantee it, the type of prob-
ability density function (pdf) of strength, including its tail, must
be determined. This objective, not pursued previously, is hardly
achievable by experiments alone, since >108 tests of specimens
would be needed. Here we outline a statistical model of strength
that resembles a fishnet pulled diagonally, captures the tail of
pdf of strength and, importantly, allows analytical safety assess-
ments of nacreous materials. The analysis shows that, in terms of
safety, the imbricated lamellar structure provides a major addi-
tional advantage—∼10% strength increase at tail failure prob-
ability 10−6 and a 1 to 2 orders of magnitude tail probability
decrease at fixed stress. Another advantage is that a high scat-
ter of microstructure properties diminishes the strength differ-
ence between the mean and the probability tail, compared with
the weakest link model. These advantages of nacre-like materials
are here justified analytically and supported by millions of Monte
Carlo simulations.
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The imbricated arrangement of the lamellae in nacreous struc-
tures is seen in Fig. 1 and is schematically idealized, with-

out microscale disorder, in Fig. 2. The deterministic strength and
fracture properties of nacre have been clarified by Suo, Gao and
others in refs. 1–7. The mechanical robustness of Strombus gigas
shells (or conch), which is similar to nacre, has been studied by
Ballarini and coworkers (4, 8). A truss arrangement similar to
Fig. 2B was used in ref. 5 as a replacement of bond layers in
deterministic failure analysis.

For the purpose of statistical analysis, the longitudinal load
transmission must be realistically simplified. Almost no load gets
transmitted between the ends of adjacent lamellae in one row,
and virtually all of the load gets transmitted by shear resis-
tance of ultra-thin biopolymer layers between parallel lamel-
lae. The links of the lamellae in adjacent rows may be imag-
ined as the lines connecting the lamellae centroids, as marked in
Fig. 2A.

1. Load Transmission and Redistribution
The essence of load transmission may thus be characterized by
a system of diagonal tensile links (Fig. 1B), which looks like a
fishnet loaded in the diagonal direction and can be simulated by
a finite element program for pin-jointed trusses. The transverse
stiffness is found to be statistically unimportant and is neglected.

Thus, the fishnet model is initially a mechanism in which all
of the links collapse under longitudinal load into a single line
(Fig. 2C) while retaining, crucially, the imbricated (or staggered)
connections.

When a link in the fishnet fails, its stress gets redistributed into
the adjacent links. To keep an analytical probabilistic model sim-
ple, the redistribution is handled deterministically. The equilib-
rium equations of fishnet nodes are finite difference equations.
They may be approximated by a continuous differential equa-
tion, which turns out to be the Laplace equation (9),∇2

(x ,y)u = 0,
where u is the longitudinal displacement of the fishnet nodes
after continuum smoothing and (x , y) are longitudinal and trans-
verse coordinates in the initial stress-free state (i.e., before the
fishnet collapses into a line); x = longitudinal coordinate (in the
load direction).

This governing equation is a special case of Navier’s equa-
tions of linear elasticity with Poisson’s ratio equal to 0. Solv-
ing this equation in polar coordinates (R, θ) for an infinite
domain with a circular hole, one finds that the stresses decay as
R0/R, where R0 is a characteristic length proportional to hole
radius. This deterministic approximation is then used in an ana-
lytical solution of failure probability. In numerical simulations,
though, the stress redistribution among the links is computed
exactly.

2. Failure Probability of Fishnet Model
We consider the case of load control, for which the failure load
is the maximum load, σmax . We analyze rectangular fishnets with
k rows and n columns, containing N = k × n links (Fig. 2C),
loaded uniformly by uniaxial stress σ imposed at the ends of rows.
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Fig. 1. (A) Nacre inside an abalone shell. (Image courtesy of Wikimedia
Commons/Doka54.) (B) Electron microscopy image of a fractured surface of
nacre. (Image courtesy of Wikimedia Commons/Fabian Heinemann.)

Let Pf (σ) be the failure probability of fishnet loaded by σ and
X (σ) the total number of links failed at the end of the experi-
ment under constant load σ. This means that X (σ) is measured
when no more damages occur. The failed links may be contigu-
ous or scattered discontinuously. The events {X (σ) = r}, r =
1, 2, 3, ... are mutually exclusive (or disjoint). So to obtain the
survival probability of the whole fishnet, the corresponding sur-
vival probabilities, PSr (σ), must be summed:

1− Pf (σ) = PS0(σ) + PS1(σ) + PS2(σ) + · · ·+ PSk−1(σ)

+ Prob(X(σ) ≥ k and no through crack exists)
[1]

where Pf (σ) = Prob(σmax ≤ σ); σmax is the nominal strength
of structure; and PSr (σ) = Prob(X(σ) = r), r = 0, 1, 2, ....

The event {X (σ) = 0} means that all N links survive (i.e.,
none fails) under load σ. With the notation P1(σ) = Prob(σi ≤
σ) = given failure probability of one link, the joint probability
theorem yields 1− PS0(σ) = [1− P1(σ)]N . This is equivalent to
the weakest link chain model. Based on Eq. 1, this model repre-
sents an upper bound on Pf of the fishnet. The link strengths are
considered to be identical identically distributed (i.i.d.) random
variables, which means that the autocorrelation length of the dis-
crete field of link strengths is assumed not to be longer than the
length of one link. This approximation is plausible because inter-
laminar bonds are separated by stiff lamellae and thus must have
formed without any mutual influences.

As previously derived from bond break frequency, or proba-
bility, on the atomic scale, and from the laws of the nano–macro
transition of power law probability tails under parallel and series
couplings (10–14), the probability distribution on the level of one
fishnet link must be the Gaussian distribution with a Weibull dis-
tribution grafted on the left, which, in the remote tail, is a power
law of exponent m equal to Weibull modulus, m (typically, m lies
between 20 and 50). For N →∞, PS0(σ) = 1− e−(σ/σ0)m = the
Weibull distribution (14, 15), which gives a straight line of slope
m in the Weibull scale.

3. Two-Term Fishnet Statistics
To get a better upper bound, we now include the second term in
Eq. 1—that is, 1 − Pf (σ) = PS0(σ) + PS1(σ), where σ equals
average longitudinal stress in the cross-section, the same in every
section. The second term contributing to survival probability rep-
resents the joint probability that one and only one among N links
fails while simultaneously all of the other links survive under load
σ at the end of experiment. So, according to the joint probability
theorem:

PS1(σ) = NP1(σ) ·
N−1∏
i=1

[1− P1(λiσ)] [2]

Here λi is the stress redistribution factor, which is, for simplicity,
obtained deterministically; λi can be ≥ 1 or < 1. For the rest of
N−1 links to survive, they must first survive under the initial uni-
form stress field σi = σ and then under the redistributed stress

field σi = λiσ. Where λi < 1 (shielding zone), the links need to
survive only the initial stress field, which means we can reset λi

as 1.
For the sake of simplicity, we further assume that (i) the

stress redistribution affects only a finite number, ν1, of links in a
finite neighborhood of the first failed link in which λi > 1.1 and
(ii) factor λi is treated as constant, λi = η

(1)
a (> 1) within this

neighborhood, taken either as the weighted average of all redis-
tribution factors (to get the best estimate) or as the maximum
of these factors (to preserve an upper bound on Pf ). With this
simplification, Eq. 2 becomes:

PS1(σ) = NP1(σ)[1− P1(σ)]N−ν1−1[1− P1(η(1)
a σ)]

ν1 [3]

Here N means that failure can start in any one of the N links,
which gives N mutually exclusive cases. The two bracketed terms
mean that the failure of one of the N links must occur jointly with
the survival of (i) each of the remaining (N − ν1 − 1) links with
stress σ and (ii) each of the remaining ν1 links with redistributed
stress η(1)

a .
In view of Eqs. 1 and 3, the two-term estimate of Pf may be

conveniently rearranged as:

1− Pf (σ) = [1− P1(σ)]N [4]

·
{

1 + NP1(σ)P∆(σ, η(1)
a , ν1)

}
[5]

where

P∆ =
1

1− P1(σ)

[
1− P1(η

(1)
a σ)

1− P1(σ)

]ν1
[6]

Note that P∆ → 1 as σ → 0. Therefore, at the lower tail of Pf ,
we have:

1− Pf (σ) = [1− P1(σ)]N · {1 + NP1(σ)} [7]

To help in understanding, Eq. 7 may be transformed to the
Weibull plot of Y ∗= ln[− ln(1 − Pf )] versus X ∗= lnσ. Using,
for small P1, the second-order Taylor series approximation ln[1−
Pf (σ)] ' −N (N + 1)P2

1 /2, one obtains, for Weibull scale plot:

Y ∗ = 2 lnP1(σ) + C , C = ln[N (N + 1)]− ln 2 [8]

To compare, the Weibull scale plot for the weakest link model
is Y ∗= lnP1(σ) + constant. So we conclude that the second
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Fig. 2. (A) Schematic microstructure of nacre. (B) Equivalent fishnet struc-
ture with similar topology. (C) Deformation mechanism of transversely
unconstrained fishnet.
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Fig. 3. (A) Cumulative distribution function (cdf) of failure for a single
link with mean ft = 10.016 MPa and coefficient of variation (CoV) = 7.8%.
(B) Comparison of Pf (in Weibull scale) between the finite weakest link
model and the fishnet model with the first two terms in the expansion of
Eq. 1.

term of fishnet statistics increases the terminal slope of strength
probability distribution in the Weibull scale by a factor of 2.

Particularly important are the implications for structural
safety. In Fig. 3B, the horizontal line for Pf = 10−6 marks the
maximum failure probability that is tolerable for engineering
design. In this typical case, for constant N , the strength for
Pf = 10−6 is seen to increase by 10.5% when passing from the
weakest link failures to fishnet failures, while, at fixed strength,
the Pf is seen to decrease about 25 times. The Pf decrease
depends on the fishnet configurations and P1 but is generally
more than 10-fold. This is an enormous safety advantage of the
imbricated lamellar microstructure, which comes in addition to
the advantages previously identified by deterministic studies.

Note that, for σ→∞, the term P∆ in Eq. 6 approaches 0. This
causes the strength probability for high σ to be close to the weak-
est link model, which corresponds to the first term of the sum in
Eq. 1 (see Fig. 3).

The transition from slope m to 2m is approximately centered
at stress σT for which P∆(σT ) = 0.5. Calculations show that the
center of the transition shifts left and down dramatically as the
redistribution factor η(1) is increased from 1.1 to 1.6.

4. Three-Term Fishnet Statistics
Further improvement can be obtained by including the third
term of the sum in Eq. 1. This term may be split into two parts,
PS2 =PS21 + PS22 , which are mutually exclusive and thus addi-

tive. They represent the survival probabilities when the next
failed link is, or is not, adjacent to the previously failed link:

PS21 =

(
N
1

)(
ν1

1

)∫ σ

x1=0

∫ η(1)σ

x2=x1

ψ(x1)ψ(x2)dx2dx1 [9]

·[1− P1(σ)]N−ν2−2 [1− P1(η(2)σ)]
ν2 [10]

PS22 =

(
N
1

)(
N − ν1 − 1

1

)∫ σ

x1=0

∫ σ

x2=x1

ψ(x1)ψ(x2)dx2dx1

[11]

·[1− P1(σ)]N−2ν1−2 [1− P1(η(2)σ)]
2ν1 [12]

Here ψ(σ) = dP1(σ)/dσ = pdf of the strength of each link;
η(2) = stress redistribution ratio for links, ν2 in number, adja-
cent to two failed links. This ratio is, for simplicity, assumed
to be uniform over a zone where the redistributed stress
exceeds 1.1σ.

When, in Eqs. 9–11, the integral over x2 is substituted into
integrals from x2 = x1 to x2 =σ and from x2 =σ to x2 = η(1)σ,
one gets:

A

B

Fig. 4. (A) Normalized histogram of 106 Monte Carlo realizations (σmax)
compared with the probability density functions of the weakest link, two-
term fishnet and three-term fishnet models. (B) The same data as well as the
histogram of σ(1)

max and σ(2)
max converted into cumulative probability distribu-

tion and plotted on Weibull paper. ft = 9.87 MPa is the mean strength of
one link and CoV = 9.87%.
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Fig. 5. (A) Change of failure probability of a fishnet pulled horizontally
caused by varying the aspect ratio k/n gradually from 1 : N to N : 1 at con-
stant number of links (Weibull scale). (B) Monte Carlo simulations showing
the transition of Pf as the aspect ratio of fishnet is changed from 1 × N to
N × 1 (N = 256). (C) The same data replotted on Weibull paper. ft = 9.87
MPa is the mean strength of one link and CoV = 9.87%.

PS21 = N ν1

{
P1(σ)P1(η

(1)
b σ)− 1

2
P1

2(σ)

}
[13]

·[1− P1(σ)]N−ν2−2 · [1− P1(η(2)σ)]
ν2 [14]

PS22 =
1

2
N (N − ν1 − 1)P1

2(σ) [15]

·[1− P1(σ)]N−2ν1−2 · [1− P1(η(2)σ)]
2ν1 [16]

Here the multipliers N and (N −ν1−1), representing the values

of combinatorial coefficients
(
N
1

)
,
(
ν1

1

)
, and

(
N − ν1 − 1

1

)
,

mean that, for the first and second link failures, there are N , and
ν1 or N − ν1 − 1, mutually exclusive possibilities. The integrals
over the pdf of random strength of one link express the joint
probability of two links failing. The second integral reflects the
fact that the second link that fails cannot have a lower strength
than the first one (which translates into the restriction x2 ≥ x1,
imposed by the lower limit of the second integral in Eq. 11). The
bracketed terms give the condition of simultaneous survival of
the remaining links, both of which take into account the equiva-
lent redistributed stresses. The term 1

2
P1

2(σ) ensues from inte-
grating over a triangular domain in plane (x1, x2) bordered by
line x2 = x1.

Factoring out [1 − P1(σ)]N from the sum of Eqs. 13 and 15,
one can further show that, in the Weibull scale plot, the three-
term fishnet model causes a tripling of the slope of lower-left
asymptote of the strength pdf compared with the weakest link
model. Furthermore, since PS22 is asymptotically proportional
to N 2 and PS21 to N , it may also be concluded that, for large
fishnets, PS21 is negligible and that the second link failure before
σmax mostly occurs far away from the first.

The case of survival when more than three links fail before
σmax is too unwieldy to benefit from analytical treatment. Nev-
ertheless, it can be shown that the terms of the sum in Eq. 1 are,
asymptotically, power laws with increasing integer exponents and
rapidly decreasing magnitudes, similar to Taylor series.

5. Monte Carlo Failure Simulations
A rectangular fishnet truss, with k rows and n columns of iden-
tical links, has been simulated by a finite element program (in
MatLab). For computational stability, the fishnet is loaded under
displacement control, by incrementing equal longitudinal dis-
placements u0 at the right boundary. At the left boundary, the
horizontal displacement is zero. The boundary nodes slide freely
in the transverse direction. According to the arguments in refs.
10, 11, 13, 14, based on nanomechanics and scale transitions, the
cdf of strength of each link, P1(σ), is assumed to be a Gaus-
sian (or normal) distribution with a Weibull tail of exponent m
grafted on the left at failure probability Pg (for σ→ 0, the cdf
∝ σm). The strength of each of the N = k × n links is generated
randomly according to P1(σ).

Fishnets of various sizes N = k × n , with various numbers
k of rows and n of columns, have been numerically simulated,
and the maximum of the cross-sectional average (or nominal)
stress σ at the boundary has been evaluated. When the loading
increment exhausts the strength of any link, the link is deleted,
which represents a brittle type of link failure (i.e., no gradual
softening).

The strengths of links represent a discrete random field. As
argued before, the autocorrelation length is assumed to be equal

Fig. 6. Statistical size effect on the median strength of quasibrittle fishnet.
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to the nodal spacing and may thus be ignored. Generally, about
one million Monte Carlo simulations, for one million different
random field inputs, have been run for each case and the max-
imum loads (or σmax )) have been recorded. Plotting, as a func-
tion of applied σ, the fraction of computed σmax values that are
less than various σ values, one gets the estimated cdf of fish-
net strength. For one million random simulations, the normal-
ized histogram gives an almost exact curve of the cdf of fishnet
strength.

To verify the analytical two- or three-term statistics, respec-
tively, the cases in which more than one, or two, links failed
before the maximum load have been deleted from the set of
about one million simulations of a fishnet having 16 × 32 links,
CoV = 0.987 of P1 and grafting point at Pg = 0.09. This is equiv-
alent to omitting in Eq. 1 all of the terms except the first two or
three, respectively. The remaining histograms (σ(1)

max and σ(2)
max )

are compared with the analytical cdf in Fig. 4B (Fig. 4A shows,
for all simulations of σmax , only the histogram). Despite sim-
plifications, such as using a uniform redistribution ratio η and
not distinguishing link failures at the boundary from those in the
interior, the agreement is excellent. This validates the analytical
solution.

For comparison, Fig. 4 also shows the histograms of all of the
Monte Carlo simulations, which correspond to the complete sum
in Eq. 1. Note that, in this case, the three-term model, and even
the two-term model, give a satisfactory estimate of fishnet cdf.

Consider now the effect of the fishnet shape or aspect ratio
k/n . Fig. 5 shows the histograms obtained by random simula-
tions (again about a million each) for fishnets with N = 256 links
when their dimensions k ×n are varied from 2× 128, which rep-
resents the weakest link chain (or series coupling), to 128 × 2,
which represents the fiber bundle (or parallel coupling, with
mechanics-based load sharing—that is, equal extensions of all
fibers). Obviously, the shape effect is enormous. However, fish-
nets with k�n and rigid-body boundary displacements are not
relevant to practical situations.

The simulations reveal that, for small enough CoV of
strength, and particularly for a thin enough lower tail of P1(σ))
(i.e., small enough Pg), the fishnet follows the weakest link
model—that is, reaches the maximum load (and fails if the
load is controlled) as soon as one link fails. The higher the
CoV of link strength, the higher the number of links that
tend to fail before reaching σmax . This trend causes the left
asymptote of cdf in Weibull plot to become steeper, as already
shown in Fig. 4. Therefore, producing a high scatter (i.e., a
higher CoV of P1(σ)) of lamellar strength in biomimetic nacre-
like structures will increase, relative to the weakest link model,
the load corresponding to Pf = 10−6, which governs safety (the
abalone and pearl shells, as well as conch, already discovered
that). An increased scatter, though, may decrease the mean
strength, because of higher redistributed stress values induced
by more numerous previous scattered damages.

Upon increasing the microstructural scatter, characterized by
the CoV of the pdf of strength (which means increasing the thick-
ness of the lower tail of P1, by increasing the Pg), computations
show that the fishnet tends to fail after the failure of an increasing
number of links. So the failure zone size increases with micros-
tuctural scatter. This means that the size of the fracture process
zone (FPZ) and thus also the size of the representative volume
element (RVE) are not constant, unless we consider only fish-

nets of the same degree of microstuctural scatter. In this respect,
nacre differs from concrete, tough ceramics, fiber composites,
rocks, sea ice, and many other quasibrittle materials, for which
the size of RVE or a fully developed FPZ is approximately con-
stant (14, 16).

6. Size Effect
For simplicity, the effect of fishnet size D (chosen either as
k or n) at constant shape k/n is here studied only for the
median strength, σ0.5, rather than the mean strength, σ̄. Both
analytical considerations and computer simulations show that
the size effect curve in the plot of log σ0.5 versus logD is not
a straight line, as in Weibull theory. Rather, the curve descends
at a decreasing slope. Also, the CoV of σ0.5 decreases with size D
(see Fig. 6). This is all similar to the type 1 size effect in fracture
of concrete, rock, tough ceramics, fiber composites, and other
quasibrittle materials.

More detailed results for the size effect and other aspects are
beyond the scope of this study and will be presented in a sep-
arate more detailed paper (9). Further refinements and exten-
sions, such as 3D generalization and quantification of P1(σ), will
also be needed (14).

Conclusions
i) In addition to the weakest link chain and the fiber bundle,

the fishnet is the third probabilistic strength model that is
tractable analytically. It includes both former models as the
limit cases.

ii) The analytical results on failure probability of fishnet are ver-
ified by Monte Carlo simulations of fishnets of various types,
with about a million random simulations for each.

iii) The larger the scatter of link strength, the higher the num-
ber of links that are likely to fail before reaching the maxi-
mum load.

iv) The foregoing property brings about an important statistical
advantage of fishnet connectivity in the microstucture—for
increasing scatter in link strength (and probably also in the
overlap length of adjacent lamellae), the cumulative prob-
ability distribution exhibits, in Weibull plot, an increasingly
steeper lower left tail compared with the weakest link model.
This greatly decreases the ratio of mean failure stress to the
stress with failure probability 10−6, which is beneficial for
structural safety.

v) For the same number of links, the curve of cumulative
probability distribution of fishnet lies, in Weibull plot,
between the curves for the weakest link chain and the fiber
bundle.

vi) As the longitudinal-to-transverse ratio of the number of links
in a rectangular fishnet decreases, the probability distribution
transits from the weakest link chain to the fiber bundle as the
ratio increases.

vii) The fishnet strength exhibits a significant size effect when
scaled up geometrically. The size effect is similar though not
identical to the type 1 size effect (14) in concrete, tough
ceramics, rocks, sea ice, fiber composites, and other quasi-
brittle materials.
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